

SC SWANA SPRING CONFERENCE

"Landfills and Groundwater" A Case Study of Impact in North Carolina

May 10, 2017

Presenter:

Joan A. Smyth, P.G., Vice President

Outline:

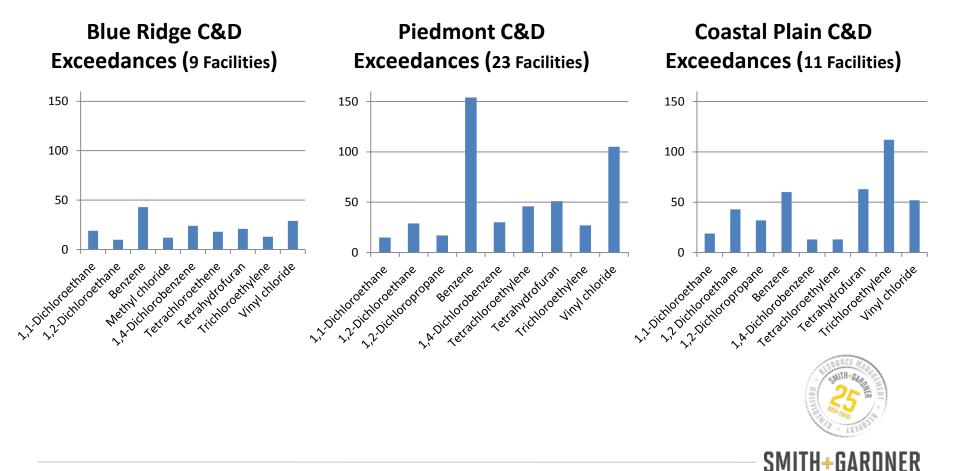
- Introduction/Purpose
- NC Landfill Groundwater Monitoring
- Focus of Study
- Groundwater Quality Results
- Leachate Vs. Groundwater Results

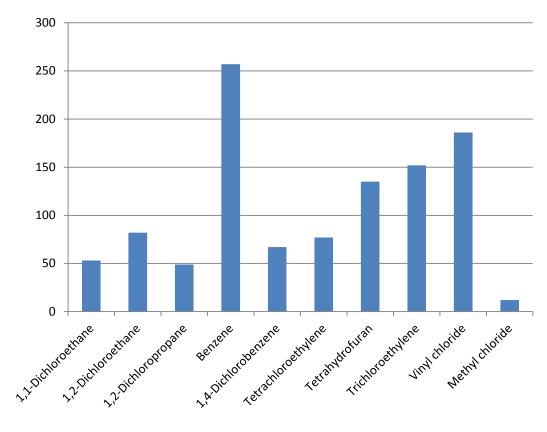
Introduction/Purpose

- NC Landfill Monitoring Database
- NC GW Standards vs. MCLs
 - ▶ 15A NCAC 2L.0100 (et.seq)
 - ▶ GWP's
 - No Standard
- Purpose: Evaluate Statewide Landfill Monitoring Data for Trends/Exceedances

- NC Water Quality Monitoring for Landfills
 - ▶ Semi-Annual Monitoring since 1993
 - NCDEQ Mandated Format in 2007
 - Required Data includes:
 - Permit #, Well ID, CAS #, Parameter, Results, Units, Qualifier, Method, MDL, MRL, SWS Limit, etc.
 - Only State in Region Using Database
 - Trend Evaluation Great in Theory!
 - Data Management/Required Reporting = KEY

Focus of Study

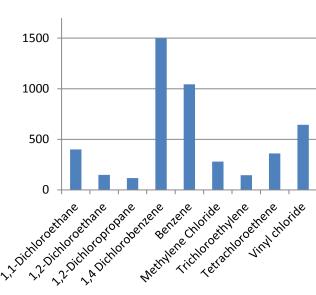

- Database includes data from various landfill types: Unlined MSW, Lined MSW, C&D, and LCID
- ▶ NC A Mineral Rich State
- ▶ Focus=Organic Constituents at Unlined MSW and C&D
- Evaluated Data by Physiographic Province/Statewide



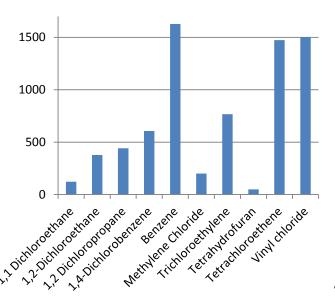
C&D Landfill Results (>10 Exceedances)

► Statewide C&D Landfill Results (>10 Exceedances)

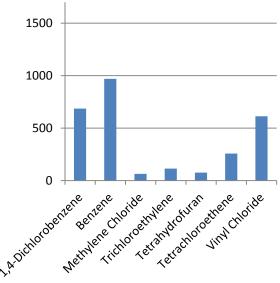
Statewide C&D Exceedances



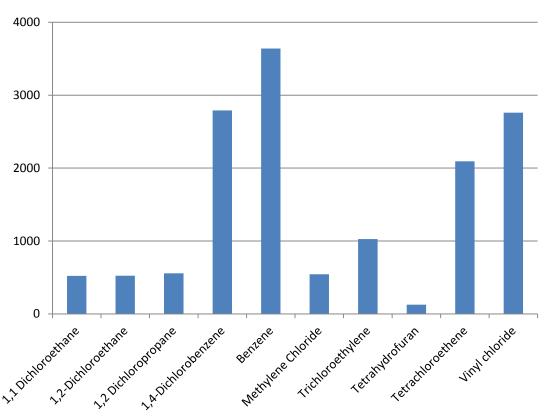
SC SWANA


Landfills and Groundwater

Unlined MSW Results (>49 Exceedances)


Blue Ridge MSW Exceedances (26 Facilities)

Piedmont MSW Exceedances (60 Facilities)


Coastal Plain MSW Exceedances (6 Facilities)

► Statewide Unlined MSW Results (>49 Exceedances)

Statewide Exceedances

Landfill Leachate

- Changes Strength Over Time
- Varies Based on Industry, Compaction, Climate, Etc.
- Leachate Constituents Vs. Detected
 - ▶ EREF MSW Landfill Leachate Characterization Study, 2007
 - ▶U.S. EPA Summary of Data on Municipal Solid Waste Landfill Leachate Characteristics, 1988

SC SWANA

Landfills and Groundwater

Red = Common Constituent in GW

Detected GW Constituent	Leachate Detections (2007)	Leachate Detections (Pre-1980 landfills, sampled 1988)
1,1 Dichloroethane	39.12%	48%
1,2 Dichloroethane	13.91%	9%
1,2 Dichloropropane	6.54%	13%
1,4 Dichlorobenzene	30.74%	24%
Benzene	43.29%	56%
Methylene Chloride	42.90%	71%
Trichloroethylene	14.68%	38%
Tetrachloroethylene	10.51%	24%
Vinyl Chloride	21.07%	19%

1988 High Leachate Detections Not prevalent in GW exceedances: Trans 1,2 Dichloroethylene (55%), Isophorone (43%), Naphthalene (52%), Toluene (83%)

Conclusions

- Limited Subset of Appendix I Parameters Seen in GW near C&D/MSW Landfills
- Data Management Varies by Provinces Making Trend Analysis Difficult
- Leachate Parameters Line Up With Detections
- Some High Detection Leachate Parameters Not Seen at Corresponding Rate in Groundwater
- Incredible Opportunity to Refine Future Monitoring But Data Must Be Managed/Collected Properly
- Long Term Decisions Could Be Influenced by Data

